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Abstract

Nonlinear partial differential equations for the vibrating motion of a plate based on a modified higher order plate
theory with seven kinematic variables are derived. The present seven-variable modified higher order plate theory sat-
isfies the stress-free boundary conditions. Using these derived governing equations, the large amplitude vibrations of a
simply supported thick plate subjected to initial stresses are studied. The Galerkin method is used to transform the
governing nonlinear partial differential equations to ordinary nonlinear differential equations and the Runge-Kutta
method is used to obtain the ratio of linear to nonlinear frequencies. Frequency ratios obtained by the present theory
are compared with the Mindlin plate theory results and Lo’s 11-variable higher order plate theory results. It can be
concluded that present modified plate theory predicts frequency ratios very accurately. Also, the benefit of significant
simplification can be observed as compared with the Lo’s higher order plate theory. The effects of initial stress and other
factors on frequency ratio are investigated. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Large amplitude vibration phenomenon of a plate plays an important role in works of obtaining design
resonant-free structural components. So, the study of large amplitude vibration of plates has gained
considerable importance in the recent years. The large amplitude vibration of plates are usually studied by
using classical thin plate theory and Mindlin—Reissner type thick plate theory. A lot of references in the
specialised monographs by Berger (1955), Chauhan and Ashwell (1969), Wu and Vinson (1969), Huang
(1972), Chia and Parbhakrar (1978), Sathymoorthy (1979), Raju (1980), Reddy et al. (1981), Reddy and
Chao (1982), Singh et al. (1991), Pillai and Rao (1991a,b) and Rao (1992) fully attest this statement.

However, an accurate determination of nonlinear vibration depends largely on the theory used to model
a given structure. The above studies were based on the thin plate theory or Mindlin plate theory with a
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Nomenclature

C; stiffness coefficients of stress—strain relations
4;;, Dy, Fyj;, Hy, K;; the stiffnesses of plate
0, G; 1initial and perturbing stresses
us, u, Initial and perturbing displacements
u; displacements of plate in x, y, z directions
uy, uy, w displacements of plate (z = 0) in x, y, z directions
¢y> @y, @, rotations of plate in x, y directions
¢, higher-order shear deformation term
I, I, Is, I; the inertia coefficients of plate
a, b dimensions of plate in x, y directions
plate thickness
R aspect ratio, R = a/b
r thickness ratio, » = a/h
Wiax ~ nondimensional vibration amplitude, W = w/h
Ny, M;; initial stress resultants
P;, AP, the applied surface traction and perturbing surface traction

Om in-plane bending stress

On in-plane normal stress

p ratio of bending stress to normal stress, ff = o,,/0,
nondimensional buckling coefficient, K = N, h*?/n*R>Dy;

T nondimensional time, t = #(2Dy, / ph’a?)""?

o) nondimensional linear frequency

Wnl nondimensional nonlinear frequency

shear correction factor introduced into the shear stress resultants, which in general violated the condition of
surface traction. When the amplitude of vibrations are large enough compared to plate thickness, the thin
plate and Mindlin plate theories do not adequately model the behaviour of structures. Higher order theory
has a more realistic distribution of transverse shear strain and gives more accurate results than general first
order plate theory. Many different higher order plate theories had been proposed by Whitney and Sun
(1973), Lo et al. (1977a,b), Reddy (1984a,b) and Ahmed (1994) to plate analysis. Recently, Reddy and Phan
(1985), Bhimaraddi and Stevens (1984) and Murth and Vellaichamy (1987) used a variational approach to
derive a higher order theory in which a special displacement field is chosen to satisfy stress-free boundary
conditions. A critical evaluation of new plate theories by Bert (1984) indicated that the theory of Lo and
coworkers provides an accurate prediction in the behaviour of plates. However, this higher order plate
theory with 11 variables is so complex that its utility is questionable. The third author and his colleague
had derived the governing equations based on a higher order theory (Doong, 1987, Doong et al., 1987)
and modified theory (Doong and Lee, 1991) for plates in a general state of nonuniform initial stress. The
governing equations for plate deflection based on a modified higher order plate theory with seven kinematic
variables. Firstly, assume the same form for the displacements as that of Lo et al. (1977a,b), then introduce
the condition that the transverse shear stresses, @,, and &,., vanish on the top and bottom surfaces. These
conditions are equivalent to the requirement that the corresponding strains are zero on these surfaces for
plates. We have 7_(x,y,+h/2) = 0 and 7 .(x,y,+h/2) = 0. In the previous works, only linear governing
equations were derived to investigate natural frequencies and buckling loads of plates. It did not add shear
correction factors but accurate results were obtained.
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Using Mindlin plate theory (first order plate theory), Chen and Doong (1983a,b) studied the effects of an
arbitrary initial stress state on the large amplitude vibration problems of plates. Owing to the complexity of
nonlinear problems, little literature has been found to study large amplitude vibration problems based on
a higher-order theory. Doong and Chen (1988) and Chen et al. (1994) used higher order theory to derive
nonlinear governing equations of beams and plates, respectively, in which the large amplitude vibration
problems were studied. In this paper, a modified higher order plate theory with seven variable is developed
and the displacement field is chosen to satisfy stress-free boundary conditions. Nonlinear governing equa-
tions of motion are derived by using the average stress method on the basis of the von Karman assumption.
The large amplitude vibration problems are studied by using the Galerkin method and Runge-Kutta
method. The results of linear to nonlinear frequency ratio based on the modified higher order plate theory
are compared with the Mindlin plate theory results and Lo’s higher order plate theory results. Also, the
effects of initial stress and other factors on frequency ratio are investigated.

2. Perturbed equations

We should consider a body in a state of nonuniform initial stress, which is in static equilibrium and is
subjected to a time-varying incremental deformation. Following a technique described by Bolotin (1963)
and Brunelle and Robertson (1974), the equations can be derived by using a perturbing technique:

(03jtts;) ; + 058y + s + U ))] ; + Fs + AF, = pig, (1)

FS + APS = [O-ijﬁs,j + E,‘j(&,‘: + us,j + ﬁj‘j)]ni. (2)

The n; are the components of the unit normal given with respect to the spatial frame (a list of no-
menclature is given). It is assumed that the initial displacement gradients are so small that the product G;u
can be neglected. For the plate theory of large deflection, the von Karman’s assumptions are employed.
Therefore, the perturbed displacement gradients are also so small that the terms o;u,; may be dropped
except for o, . and 1. ,. In order to give clarity to the integration procedure, it is useful to partially write
out Eq. (1):

@(aifaﬁ_x/@xj)/ﬁxi + @ﬁix/ax,« +F¥ + AR = pil;x, (3)
0(,;0m, /0x;) /Ox; + 0G,, /Ox; + F, + AF, = pﬁyv (4)
0(0,;0u. /x;) /Ox; + 06, /dx; + 0(Gylt..) /Ox; + 0(Gyii.,) /Ox; + F. + AF, = pii.. (5)

3. Governing equations

The following seven-variable incremental displacement field that satisfied the stress-free boundary
conditions (Doong and Lee, 1991) are assumed to be of the form

Uy, = u, + Z|:(px - %(pz,x - %(Z/h)z(w,x + Py + %h2€z,x):| ) (6)
=y, + 20, ., — 3/ 00y + 0, + 1L (7)
w.=w+zg, +2E. (8)

The constitutive relations are given by
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O Ch Cp Cs 0 0 0 Exx

Eyy Ch Cpn Cxn 0 0 0 Eyy

Oz | _ Cs Cpn C 0 0 0 [ )
G 0 0 0 Cyu4 O 0 T |

[ 0 0 0 0 Css O Vo

Ty 0 0 0 0 0 Cell¥

The von Karman’s assumptions are employed. The displacements are infinitesimal. In the strain—
displacement relations only those nonlinear terms which depend on #.,, #., are to be retained. All other
nonlinear terms are to be neglected.

Kinematic relations are

5 — 73 12
Exx = Uxx + Euzﬁxv

- = 12
&y = Upy +35U

Eyy - ﬁz,za (10)

Vyz = uy,z + Hz‘yv
vzx = HZJC + ax,ﬂ

Ty = Uy + Upx + Uzl

Thus, von Karman’s theory differs from the linear theory only in retaining certain powers of the derivatives
U, U, in the strain—displacement relationship.

Substituting the displacement field equations (6)—(8) into Eq. (10) and the constitution equation (9), the
stress—displacement relations are found to be

Fo = Cur{u + 2[00~ doo = 4/0 (wi+ 0+ 9°E0)] |

+ Cofu +2[0, —doo, —4G/W 0, + 0, 08|}

+ Cia[w 4z, + 28]+ Cii(w+ 20, + &)’ /2 + Cio(w + 29, + 22E)% /2, (11)

Eyy = CIZ{ux + Z[q)x - %(pzx - %(Z/h)z(w’x T o+ ‘l‘hzéz"xﬂ }x
+ Ca{u 20, Yoo, — 3/ 0vy + 0, + 108, |
+ Culw+zg, + 28], + Coo(w + 20, +228)2 /2 + Co(w + 2o, + 22, /2, (12)
0., = Cl}{ux + Z[(px - %(pz-,x - %(Z/h)z(w’x + Px + %hzéz’x)} }x

+Caluy+ 2o, ~don, ~ e (0, + 0, + 17|}

+ Culw+zg, + 28] + Cis(w+ 20, + 2E)% /2 + C(w + 2. + 22E.)’, /2, (13)

P

0 = Cuy ({uy T Z[(py - %q’zw - %(Z/h)z (W-y +o,+ %hzézvy)} } . +wtze. + ZzéZ}v-V), (14

4

G, = Cs;s ({ux + z{(px — %(pz,x — %(z/h)z(w,x + o, + %hz Vm)} } + W+ zo, +ZZ€Z],X>, (15)



C.-S. Chen et al. | International Journal of Solids and Structures 38 (2001) 8563-8583 8567

Exy = C66 <{uv + Z|:(/)x - %(pz,x - %(Z/h)z (WJC + Py + %hzézsx)} }.y + {u}’ + Z|:(py - %(pz,y
e/ (st 0y + )] | btz 4 PE] 2 28] ) (16)

For subsequent use in the equations of motion, the following initial stress resultants and material pa-
rameters are defined:

(A7j7Dlj)Flvj71ilj7K ) /Cij(1322724,26,28)d2 (Za]: 17273747576)7

ijs ijr i i

([1,[3,15,17):/p(l,zz,z4,z6)dz, (17)

(N M/;M* P P* Rl/7R ) /O-ij(1727227z3az4525726)dz (i,j:x,y,z),

where all the integrals are through the thickness of the plate from —#/2 to h/2. The seven governing
equations can be obtained by substituting Egs. (11)—(16) into Egs. (3)—(5) and integrating equations. These
governing equations are as follows:

(01 + L +L11)}x + (0> +L21)7y + (R +Rs +Ri7) . + (S1 + S6 + 517)& + f. = Lty — %135/)”7 (18)
(02 +La1) . + (O3 + Lo+ Lia) , + (Ro + Riz + Ro)  + (Sy 4+ S13 + Sa1) , + £, = Lk, — 5138, ,, (19)
(O4 + Lag + L) . + (Os + L3 +L35),y + (R0 4 Raz + Ros) , + (S50 + S5 + st),y + £

+ (%) { [(ng + Ls + Lig) . + 2(Q19 + Los) ,, + (R + Rs + Rao) . + (Sa + S5 + Sn),,,,

= 3015x + (Q20 + Lio + L) ,,, + (Ri2 + Rig + Ras) , + (S12 + Si6 + 824) , — 3016y + G + CIy,y} }
. . 4 4 \* > 2
:11W+[3€Z+ <3h2)15(§0vx+(p)y) (3h2> 17 |:Wxx+ ézxx+wy}+ ézyy:| (20)

(Os + L7+ Li7) .+ (Q7 + Laa) , + (Ra + R + Rig) , + (82 + S6 + S1s) , — Oa + my

4
- (W) [(Q1s +Ls + Lig) . + (Q9 + Los) , + (Ra + Rs + Rao) , + (Sa + S5 + S20) , — 3015 + ¢4

_ 7 .. 4 7 . + . +h2&. (21)
=130, EYE 5| Wy Py 4 |
(07 + Laa) . + (Os + Ly + Lio) , + (Rio + Rig + Raz) . + (Si0 + Sia + Sn2) , — Os +m,

4
- (W) [(Q19 + Las) , + (Qa + Lio + Lao) , + (Ri2 + Rig + Raa)  + (S12 + Si6 + S24),

S (4 ?
"0+l =1, - (3h2 >15 {W” Tty 5”} ’ >

(La7 + L) , + (Las + Lag) , + (Ra1 4 Raa + Rag)  + (S31 + S34 + S36) , — Q11 — Os6 + m- +53[(Oa
+ Lo+ L) o +2(013 + Ln) ,, + (Rs + Ry + Ry, + (S5 + 87+ Si9) , + (Qua + Ls + Lis) ,,
+ (Rit + Ris + Ros) , + (St + 815+ 823) ), + hx + 1y ] — Lao
= L. + 33 (i + ilyy) = 315(Bo + Pay)s (23)
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(Lag + La1) , + (Lsa + Ly7) , + (Raz + Ras + Ray) . + (Sa2 + S35 + o), + b = 3[(Q1s + Ls + Lig)
+2(Q10 + Las) , + (Ra + R + Rao) ,, + (Sa + S5 + S20) , + (Q20 + Lio + Lao)

+ (Ri2 + Ris + R24)7xy + (Si2 + Si6 + 524)),), + Gex + qyy] — 2017 — La
. - . 4 . n . . n
= L+ I5E +315(Pey + @) — o I (W + vy Eoe Wy + vy Eowl- (24)

The coefficients of above equations are given in Appendix A.
Before giving the boundary conditions on the plate, in terms of normal and tangential coordinates, it is
convenient to define the following traction resultants where all integrals are from —#/2 to h/2:

AF,, = / AP, dz, AF,, = / P,dz,
AR, = / APdz,  AF, = / P.dz,
AF. = [apdz  AF. = [P
AM,, = /AP,,ZdZ, AM,, = /I_andz,
AM,, = /AP,zdz, AM,, = | P.zdz,
AM,. = /APzzdz, AM,. = /I_Dzzdz7
AM?, = / APZdz,  AM, = / P.Z2dz,

(NijaMiﬁAZ;aPihP;') = /Eij(l,Z,ZZ,Z37Z4)dZ, (iaj:xayaz)'

If Eq. (2) is phrased in terms of stresses normal and tangent to the edge then n, = 1, n, = 0 and n, = 0, on
the edge. Thus,

Fn + APn = Gnnﬁn,n + Gntﬁn,t + anﬁn,z + Enna (25)
ﬁt + APt = O-nnut,n + Oullyy + Op Uy + O, (26)
P.+ AP, = Gt + Oty + Ol + Grp + Gyl + Gl (27)

The subscripts #» and ¢ denote the normal and tangential directions of the plate’s edge, respectively. The
terms containing the initial stresses account for the change in the initial boundary conditions due to the
incremental deformation. The boundary traction conditions are
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— 1 4 h?
Frm + AEm - Nrtnun,n + Mrm Pyn — EMnn Pepn — ann W + (pn,n + Z éz,nn

1 4 h?
+ Nntumt + Mnt(/)n,t - _Mnt(Pzint - ant W ot + (/7n,t + Z éz,nt

2
+N, Ly e + 9, + " &) +N
nZ(Pn 2 ﬂz(pz,n hz nz W«,n (/)n 4 z,n nnsy
_ 1 4 h?
Fnt + AE:[ - Nnnut,n + Mnn(pt,n - 7Mnn90z‘tn - 72Pnn W + QDW + 7éz,tn
2 3h 4
1 4 h?
+ Nntuz,t + Mntq)tﬁt - EMnt(pz,tt - ant Wy + @, + Z fz,tt

I 4 & .
+ anq), - Eanqu,t - ﬁan w;+ @, + Zéz,t + Nuts

Fnz +AF,, = W + Mmlgoz‘n + M:nﬁz,n + NntW,t + Mm@z}t + M;,kléz,t + N2,
+2M,.E. + Nz + NoWoy + M., + M, Eo o+ Nyw, + My, + ME,,

_ . 1. 4 n
MW! + AMV!” = Mmu”v" + Mnn(pan - EMnn(pZA,nn - ann <W7m’l + (pn,n + Zézﬂﬂ) + Mmu”vt (28)
. 1. 4 n
+ Mm(pnit - EMnt(pz,nt - me (W«,nl + (pn,t + z éz,nt)
+M, Ly 2 p + ¢, + " En | +M,
ﬂz¢n 2 ﬂZ@z,n hz nz W,ﬂ (pn 4 z,n nny

_ RS 4 %
Mnt + AMnt - Mnnut,n + Mm(pt,n - EMnn¢z,tn - ann (an + (tDt,n + Z éz,tn)

. | 4 h?
+ Mnt”t,t + Mnt(pt,t - EM;tq)z,tt - ant (W,tt + q)t,t + Z éz,tt)
2
an +AM,, = M,,w, + M:n Dz + Pnnéz‘n + Mntwjt + th(pz,l + Pntéz,t + an(oz + 2M;zéz
+ Moz + MW o+ M., + Pl + Muw, + My, + Pulsy,
M; + AM:z = M:nwﬂ + Pu®., + P:néz,n + M;tw,l + Pnt(/’z,t + P;tfz‘t + M: ¢, +2P:¢.

1z

+ M::z + M;nwﬁ + ﬁnn Dz + p:n éz,n + M;lw,t + ﬁnt(pz,r + p;; éz,t'

1 4 h? N
+ anﬁoz - _an(pz,t - ﬁPnz W,t + ®Q; + Z éz,t + Mnm

Alternative displacement boundary conditions are
Uy = Uy, U = Uy, W=Wizy Q= Qpy @, =0y, @.=Qu, & =2y,

where the quantities on the right-hand side are prescribed. If a rectangular plate was being considered, the
boundary conditions would be rephrased in x, y coordinates.
4. Example problem

Here a simply supported plate of uniform thickness / in a state of initial stress is to be considered. The
state of initial stress is
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O = Oy + 2200 /1, (29)

where g, and o, are taken to be constants and other initial stresses assumed to be zero. It is comprised of a
tensile (compressive) o, plus a bending stress o,,. The only nonzero initial stress resultants are

Ny = hoy, M, = h*c,, /6, M. = ha,/12, Py = h*a,,/40, P = h’c,/80.
Lateral loads and body forces are taken to be zero:

Sos s fos s s ey mo my m, g, g, = 0.
For the simply supported plate, the boundary conditions are, on x = 0 and x = a edges

LI)’:O’ (py:07 WZOa QDZZO, 62:0’

— 1 4 h? .
F)oc + AFxx - Nxxux,x + Mxx(px,x - szquz,xx - WPM W,xx + (/e + Z éz,xx + Nxx == 07

(30)
* 1 * 4 * h2 9
MXX + AMXJC = Mxxux,x + Mquox,x - EMquDz,xx - prx Woxx + Py x + Z iz,xx + Mxx =0
on the x = 0 and x = a edges
ux:()a q)x:()v WZOJ (pz:()a éz:()v
— 1 4 h? A
Fy + AF,, = Nyu,, + Myo,, - E%y(/’zw - an Wyy + @y + N Sy | TNy =0, (31)

AT * 1 * 4 * h2 v
My + AMy, = Mty + My, 0, = 5 M, 0: 4 — TR (W’W Tty 52’”) My =0

The following one term fundamental mode shapes satisfy the boundary conditions equations (30) and (31)
u, = hU(t) cos(nx/a) sin(my/b),
u, = hV () sin(nx/a) cos(my/b),
w = hW (¢) sin(nx/a) sin( )
¢, = V. (¢) cos(nx/a) sin(ny/b), (32)
0, = W, (1) sin(n/a) cos(ny/b)
¢, = V.(¢) sin(nx/a) sin(my/b),
& = (.(¢)/hsin(nx/a) sin(my/b).

Then, by substituting the assumed displacement fields of Eq. (32) into the equations of motion (18)—(24)
and solving by Galerkin method, one obtains

CiiU+ CioV + CiaWs + CreWe + NIW? + Ny W2 + N3 2 + NsW (. = Ry U + Ry 7., (33)
Ci2U 4 ConV 4 Cy5%P, + Cag W + NsW? 4+ NoW? + Nyol2 + NaW (. = RyoV + Ros V-, (34)
CisW + Cs4W + G5V, + Cs 6V, + C370, + NisUW + NigUL, + NigVW + Nog Vi, + Ns WP,

+ Nig(Ps + ¥,) V. + N P.L. + N1y WD, + Ny V., + N3 P.L. + Ny

+ 3(Nu WL+ Nog U2W + Nos P2 + NosCC W) + Nl

= RysW + Rya ¥, + R3sP, + Rs7C., (35)
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CiaU 4 C3aW 4 Caa ¥ + Ca 5V, + Cy 70, + NagW¥. + Np¥.(, = RyaW + RysP, + R47752, (36)
CosV + CysW + Cy sV + Css¥y + Cs 70, + NuWW. + NisV.[, = R 5 W +Rs3s ljjy + stgm (37)

Ci6U + CogV + C36W + CosW. + Co7l. + NigUW. + Nag VW, + 2(Nog + N3 ) W2
+ (6N + 4N31 )W, + 3N P2 + 3Nay W2 W, + Nos W2 + 3Ny W, + 6Nos W P.L, + N3y 2
+ Nag P2 + N3 (2
:RI,GU+R2,6i)+R6,6'¥Iz7 (38)

C37W + Cy7V. + Cs7 ¥, + Cr70, + NigUW + NsUL, + NogVW + Ny VI, + (3N + 4N ) WP
+ (N7 4 2N36) V.. + (Ni7 + 2Nag) W, 'P. + (3N3g + 4N33) WL + Nog W
+ 3(Nas WL, + NosW W2 + Nag P2 + N%Cf W)+ N27C:
=Ry7W + Ry7 P, + Rs7 P, + Ry 7L (39)

The coefficients of above equations are given in Appendix B.

The equations are integrated by using the fourth order Runge-Kutta method with the nondimension
time interval At taken as 0.001 to obtain reasonably accurate results. In each case, the initial conditions are
chosen as

Ut(o) =V,(0)= 'ny,(()) = 'Py,t(o) = le,t(O) = z«,t(O) = W,(O) =0.

The initial in-plane compressive (tensile) stress is contained in the buckling coefficient K. If K is positive,
then the stress is tensile. The initial in-plane bending stress contained in f§, when f = 0 and K = 0, there is
no initial stress. W, varies from 0.2 to 1.0 to show the different characteristics between small amplitude
vibration and large amplitude vibration. The nonlinear frequency for one full cycle is measured as 7y, and
the nonlinear frequency is computed as w, = 1/Ty. The linear frequency o can be calculated by neglecting
the nonlinear terms in Egs. (27)-(33).

5. Results and discussion

There are so many parameters that can be varied, it is difficult to present results for all cases. From the
numerous problems solved, only a few typical cases will be selected for discussion. The large amplitude
vibration behaviour is described by the linear to nonlinear ratio of vibration frequency (w;/wy). Table 1
gives the frequency ratios for various amplitude ratios, the isotropic plate with no initial stresses are the first
to be considered and the frequency ratios based on present seven-variable higher order theory are compared
with Sathymoorthy’s results (1979), Doong’s previous Mindlin plate theory results and 11-variable higher
order plate theory results (Chen et al., 1994). It can be observed that the frequency ratios of small amplitude
calculated by the seven-variable higher order theory matches with the other theory results very well.
However, the difference among them increases as the vibration amplitude increases. The comparison be-
tween seven variable and 11-variable plate theory results are shown in Figs. 1-3. From Fig. 1, it can be seen
that the results calculated with modified higher order plate model indicate the same decreasing trend as with
previous higher order theory model. Also, the previous higher order results always have a smaller value
than modified higher order theory results. At small amplitude the frequency ratios have very nearly the
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Table 1
w;/wy for isotropic square plate (a/b =1, a/h =10, v=0.3, f=0)
Whax = 0.2 Winax = 0.4 Waax = 0.6 Winax = 0.8 Waax = 1.0
A? 0.973 0.906 0.820 0.733 0.655
B® 0.968 0.885 0.781 0.688 0.603
H° 0.966 0.878 0.767 0.699 0.581
M4 0.967 0.879 0.780 0.683 0.594

#Sathymoorthy’s results (Sathymoorthy, 1979).
®Doong’s first order theory results.

¢ Previous higher order theory results (Chen et al., 1994).
9Present higher order theory results.

1.0

0.9

0.8

Dy
0.7

06 -

o5 bt 01
0.2 0.4 0.6 0.8 1.0

W,

max

Fig. 1. Comparison of present results with previous higher order theory (a/b =1, a/h =10, f =0, v = 0.3, K = 0, H: previous higher
order theory results; M: present higher order theory results).

1.00 o

0.80
0.70
0.60

0.50

0.40 A T T
0.2 0.4 0.6 0.8 1.0

Fig. 2. Frequency ratio versus vibration amplitude for various values of K (a¢/b =1, a/h =10, § =0, v = 0.3, H: 11-variable higher
order theory results; M: present seven-variable higher order theory results).
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mnl
02
0.0 L—
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Fig. 3. Frequency ratio versus buckling coefficient (a/b =1, a/h =10, f =0, v = 0.3, Wy = 1, H: 11-variable higher order theory
results; M: present seven-variable higher order theory results).

same data for both models while at large amplitude the little difference between them can be observed. Both
seven variable and 11-variable plate theories have almost the same accuracy. However, the benefit of
present theory, simplification over previous theory, makes this theory suitable to treat plate problems.
Table 2 present the effect of the nondimensional thickness ratio a/4 on the frequency ratio. It can be
found that the frequency ratio increases with increasing thickness ratio and the difference between two
higher order theories are more significant at low thickness ratio, i.e. the stress-free boundary conditions
should be considered for the very thick plate condition. Tables 3 and 4 depict the difference of two theory
results for various of aspect ratio and Poisson’s ratios, respectively. It can be seen that the present seven-
variable results indicate similar frequency ratios as 11-variable higher order theory results. The differences

Table 2
;/wy for isotropic square plate (a/b =1, Wy =1, v=10.3, f=0)
a/lh=>5 a/h =10 a/h =20 a/h =30 a/h =40 a/h =50
F? 0.567 0.605 0.612 0.613 0.614 0.615
HP 0.543 0.581 0.597 0.613 0.618 0.619
Me¢ 0.562 0.594 0.609 0.611 0.611 0.611

#First order theory results.
®Eleven-variable higher order theory results.
Present seven-variable higher order theory results.

Table 3
)/ wy for various values of aspect ratio (a/h = 10, Wy =1, v=10.3, f =0)
a/b=0.2 a/b=04 a/b=0.6 a/b=0.8 a/b=1.0
F 0.4622 0.4966 0.5473 0.5918 0.6026
HP 0.4311 0.4682 0.5240 0.5682 0.5811
Me 0.4554 0.4821 0.5371 0.5914 0.5938

#First order theory results.
®Eleven-variable higher order theory results.
¢ Present seven-variable higher order theory results.
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Table 4
;/wy for various values of Poisson’s ratio (a/b =1, a/h =10, f = 0)
v Winax = 0.2 Winax = 0.4 Wiax = 0.6 Whax = 0.8 Waax = 1.0
0.1 F? 0.9711 0.8930 0.7936 0.7032 0.6149
H® 0.9710 0.8927 0.7923 0.7007 0.6135
Me 0.9628 0.8925 0.7924 0.6947 0.6115
0.2 F? 0.9683 0.8882 0.7864 0.6950 0.6096
HP 0.9668 0.8860 0.7818 0.6868 0.6008
Me 0.9662 0.8837 0.7799 0.6854 0.6033
0.3 F 0.9680 0.8851 0.7818 0.6876 0.6026
H® 0.9662 0.8786 0.7812 0.6693 0.5811
Me 0.9670 0.8789 0.7818 0.6825 0.5938
0.4 F* 0.9652 0.8783 0.7825 0.6773 0.5909
HP® 0.9603 0.8601 0.7449 0.6421 0.5492
Me 0.9704 0.8872 0.7785 0.6731 0.5872

#First order theory results.
®Eleven-variable higher order theory results.
“Present seven-variable higher order theory results.

between the present theory results and the previous higher order theory results increase as Poisson’s ratio
increases. The FORTRAN programs with IBM PS-55 4MB RAM computer was used to simulate the
nonlinear vibration problems. The ratio of the time required to analyse the typical example with 11 vari-
ables and seven-variable plate theory is nearly 9:7. From the data presented in Tables 1-4, it may be
concluded that the present seven-variable higher order plate theory is simple and acceptable.

The effect of initial stresses on the frequency ratios of an initially stressed isotropic plate is clarified in
Figs. 2 and 3 and Table 5. The plots of frequency ratio versus nondimensional vibration amplitude for
different initial stress conditions are shown in Fig. 2. It is evident that the compressive edge load produces a
softening effect on the frequency ratio and the tensile load has reverse effects. Under the compressive load,
the results from the previous higher order theory show more softening effect than that of the present higher
order theory as the amplitude is enlarged. This makes the frequency ratio predicted by these two theories
show apparent difference at large amplitude vibration except when tensile load is applied. In Fig. 3, one can
see that the linear frequencies of plates will reduce to zero when the compressive stress increases. The
buckling load is obtained when the linear frequency is zero. In the whole range of initial stress calculated,
the value of the frequency ratio predicted by the previous higher order theory is always smaller than the
value from present theory especially under compressive load. Table 4 depicts how the value of the frequency

Table 5
;/wy for various values of the bending stress to normal stress (a/b =1, a/h = 10, Wy = 1, v =10.3)
B=0 =5 £=10 f=15 £ =20 f =25 £ =30
k=2 F# 0.681 0.681 0.681 0.681 0.681 0.681 0.680
H° 0.672 0.672 0.672 0.673 0.674 0.673 0.669
Me 0.630 0.679 0.680 0.681 0.678 0.679 0.678
k=-2 F? 0.488 0.462 0.458 0.457 0.457 0.456 0.451
HP 0.306 0.305 0.303 0.296 0.294 0.291 0.285
Me 0.455 0.441 0.420 0.414 0.416 0.410 0.408

4 First order theory results.
Y Eleven-variable higher order theory results.
¢ Present seven-variable higher order theory results.
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ratio is changed as the value of the bending stress ratio f (bending stress to normal stress) varies. For the
tensile normal stress condition, the increase in the bending stress ratio has little effect on the frequency
ratios predicted by both theories. But, the larger bending stress ratio has the lower frequency ratio under
compressive stress.

6. Summary
The preliminary results presented here indicate the following:

1. The displacement field of present seven-variable higher order plate theory satisfies the stress-free bound-
ary conditions and the theory gives nearly similar results as the previous 11-variable higher order plate
theory results.

2. For small amplitude and low Poisson’s ratio, the frequency ratios have similar values for two higher
order theories while at large amplitude and high Poisson’s ratio the difference between them become
more significant.

3. The frequency ratio decreases with the increasing vibration amplitude and Poisson’s ratio, but it de-
creases with the decreasing thickness ratio and aspect ratio.

4. The initial compressive stresses significantly reduce the frequency ratio of the larger amplitude vibra-
tions, and the tensile stresses have reverse effects.

5. At tensile condition, the frequency ratio slightly decreases with the increasing bending stress ratio. But
the compressive condition has reverse effect.
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